Laser cutting is mainly a thermal process in which a focused laser beam is used to melt material in a localised area. A co-axial gas jet is used to eject the molten material and create a kerf. A continuous cut is produced by moving the laser beam or workpiece under CNC control. There are three major varieties of laser cutting: fusion cutting, flame cutting and remote cutting.

In fusion cutting, an inert gas (typically nitrogen) is used to expel molten material out of the kerf. Nitrogen gas does not exothermically react with the molten material and thus does not contribute to the energy input.

In flame cutting, oxygen is used as the assist gas. In addition to exerting mechanical force on the molten material, this creates an exothermic reaction which increases the energy input to the process.

In remote cutting, the material is partially evaporated (ablated) by a high-intensity laser beam, allowing thin sheets to be cut with no assist gas.

The laser cutting process lends itself to automation with offline CAD/CAM systems controlling either three-axis flatbed systems or six-axis robots for three-dimensional laser cutting.

Improvements in accuracy, edge squareness and heat input control means that the laser process is increasingly replacing other profiling cutting techniques, such as plasma and oxy-fuel. There are many state of the art laser machines on the market for cutting purposes, which can be used to cut metals, woods and engineered woods.