What is stamping technology?
Stamping is a manufacturing technology that can make sheets or plates of different thicknesses into the desired shape by mechanical stamping or ramming and does not change the thickness of the original material during the manufacturing process. Stamping technology is widely used in manufacturing engineering for three-dimensional components, cutting, or other special surface requirements.
Freely deformable metal
Metal has excellent strength, so it is often used as a structural member that requires strength. At the same time, we also found that when the applied stress (that is, the force per unit area) exceeds its tensile strength, the metal will not break immediately like brittle materials such as ceramics or bricks, but will deform. That is to say, metal has plasticity, we call it plastic deformation. Every metal has different deformability, the most obvious example is gold. Utilizing the plastic deformation characteristics of metal, the metal is formed into various shapes.
How can we plastically deform the seemingly strong metal? Then you have to use die steel that is stronger than metal. The mold steel is made into upper and lower molds according to the shape to be formed, and then the upper and lower molds are opened and the raw materials are placed, and then the molds are fixed on a device called a punch. Let the punch provide the force required for forming, and drive the mold to close and open the mold up and down. The mold is closed to form the material, and the mold is opened to allow the raw materials to enter and exit. The punch, mold, and raw materials constitute a set of stamping forming systems. Under strong pressure, even very strong metals have to deform with the shape of the mold.
Brief description of stamping process
The most common stamping processes include punching, bending, and drawing. Take the key to be used every day as an example. If you design a lower female mold with the same shape as its inner hole, and an upper punch with the same shape as it but a smaller upper punch, place the sheet on the female mold and use a punch to fix it on the upper punch punches down through the sheet to get the key of the desired shape. Such as the use of automated punch production, two to three hundred pieces or more can be produced in one minute. This is the simplest example of punching. In order to enhance the required functions or quality of the product, some subsequent machining procedures are still needed.
Regarding the bending process, it can be imagined that the upper and lower molds first press the sheet metal with the spring force, and then use the punch to apply force to the part that needs to be bent. An example of the bending process can be illustrated by the strap of a watch. A general metal watchband is made of stainless steel and is divided into two parts, a chain strap, and a buckle. When you look at the fastener, you will find that it contains 3 plates, and the inside of the joint also contains a hosel and a spring. Each piece of the plate must be bent or curled in a certain part for the function of a buckle. A closer inspection will find that it also uses other forming techniques. The part of the chain strap is also a series of punching, bending, and pressing of the plate to make a strap with the function of the chain and beautiful. Of course, if you disassemble the watch, you will find more stamped parts distributed in it. Another common example is the stapler. It is obvious that its structural parts are made by bending metal plates.
Regarding the drawing method, you can imagine a large round plate with a diameter of about 50 cm and a thickness of 0.2 cm. It is placed on a female mold with an inner hole diameter of 30 cm. The plate is pressed by a spring force in the range of 30 to 50 cm in diameter. And then use a punch with a diameter of about 29.6 cm to shape the sheet down. The plate will change from a disc shape to the shape of a can body, and the peripheral material is pulled into the female die hole by the punch to become the straight wall part of the can body. If you think the diameter is too large, you can use another set of female molds and punches with a smaller inner diameter and smaller diameter to form again. Such a forming method is called drawing.
The technology of stamping is not as simple as the above, it includes more different production methods. In order to obtain better quality, every processing method must establish standards or be changed to keep improving. A product is composed of dozens or even hundreds of parts. If the quality of one of the parts is quite different, for example, the size of each is different, then it will be impossible to assemble the product by automated means, or even Manual assembly can’t be installed, and it will cause the failure of the product. Therefore, today’s industry players are competing for the quality of parts processing and the reduction of manufacturing costs. Those who can produce the same or even higher quality parts at a lower cost will eventually win.
Read more: What Is Precision Stamping Technology?