Remarkable progress has been seen in lightweighting of automotive parts because of expanded use of high-tensile-strength steel and aluminum. However, most of the cost for lightweighted parts is the raw material—especially for press-blanked parts, where a large amount of material is wasted because of scrap produced during the cutting-out process from sheets or coil. Also, for press blanking, a die is required for each part—therefore, die manufacturing, die change, and die storage are inevitable.
Minimizing waste and die-related cost not only leads to part-cost reduction, but also reduced energy and CO2 produced during material production—a challenge for the automotive industry, which uses a large amount of materials. Honda’s solution was to develop a die-less Intelligent Laser Blanking System (ILBS) for mass production.
Aim of ILBS
Press blanking with a die is a process that has been widely used for mass production in the automotive industry. Contrary to its high productivity, the drawback of using a die is its expensive manufacturing cost and the need for long-term storage space. Also, material yield rate of the blanked part is not optimal because of the restrictions of tool edge design caused by minimum curvature.
By applying laser blanking to automotive sheet metal production, no die is required and press hardening could be avoided, leading to higher design freedom, lower cost, and higher formability, which are the advantages to conventional press blanking. However, laser blanking is mostly used in low-volume prototyping because of its overwhelmingly slow process speed compared to press blanking.
Increasing laser blanking process speed is essential to maximize its advantage over press blanking. Honda utilizes ILBS for mass production by developing three key technologies: high-speed laser cutting, a high-acceleration H-gantry system, and a continuous-feed conveying system
Read more: Laser blanking system enables mass production without dies