Following DFM Guidelines for Working with Sheet Metal

Engineers designing sheet-metal enclosures and assemblies often end up redesigning them so they can be manufactured. In fact, research suggests that manufacturers spend 30% to 50% of their time fixing errors and almost 24% of those errors are related to manufacturability. The reason behind these preventable engineering errors is usually the wide gap between how sheet-metal parts are designed in CAD systems and how they are actually fabricated on the shop floor. Many engineers developing 3D models for sheet-metal products are unaware of the fabrication tools used to form the part or product, and instead design models for an “ideal” world.

In the ideal world, everything is perfect Tolerances and allowances are exact, and there’s no need to add any feature or change the design to accommodate the shop floor or real-world material behavior. But the truth is, numerous factors including chamfers at the edges, collars near hole, and spaces between drilled holes matter in the sheet metal world.

This gap between the ideal and real-world sheet-metal design usually proves costly. The overflowing engineering change orders (ECOs), fixing the design errors, and sending revisions back to the shop floor turns into a vicious cycle, one that is often difficult to break.

Read more: Following DFM Guidelines for Working with Sheet Metal 


Posted

in

,

by